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Abstract. The parallel electronic transport in semiconductor multiple quantum wells and the
associated real-space transfer of electrons from high-mobility quantum wells into low-mobility
barriers is treated on the basis of the microscopic Lei–Ting balance-equation theory. Our
model system consists of a quasi-two-dimensional subband that is bound to the wells and a
quasi-three-dimensional band for the extended states above the barriers. The real-space transfer
between the two subbands is microscopically described as intersubband scattering by phonons.
In order to capture the appropriate selection rules for these transitions, it is necessary to choose
a set of orthogonal subband wavefunctions. A solution of the balance equations is presented
for a GaAs–AlxGa1−xAs system in which the real-space transfer causes negative differential
resistance. Our approach shows how the transport properties of the system are interrelated with
the different transfer scattering processes, and how system parameters influence the real-space
transfer. Furthermore, it is shown that the incorporation of screening requires a careful selection
of the screening model, as both intersubband contributions and dynamical effects are found to
modify the results in the random-phase approximation.

1. Introduction

In modulation-doped quantum well structures electrons can be thermionically emitted from
the wells and thus repopulate the adjacent barriers if an electric field is applied parallel
to the layers. This real-space transfer (RST) may lead to N-shaped negative differential
resistance (NDR) if the transport mobility in the barriers is much lower than in the quantum
wells [1]. A large number of theoretical and experimental results on this effect are reviewed
in reference [2]. Most previous theoretical papers that addressed the RST on a microscopic
basis relied on Monte Carlo simulations of the Boltzmann equation, and only considered
RST between wide quantum wells, in which quantization effects are not significant, and
adjacent wide barriers.

Quantization effects, however, should be considered for most systems of practical
interest because such systems usually involve narrow quantum wells or narrow potential
wells formed at single heterojunctions. In this case the RST incorporates a change of the
effective dimensionality of the electrons. In thermal equilibrium, the electrons are confined
in the wells and have a quasi-two-dimensional (Q2D) character. The application of an
electric field heats the electron gas, so some electrons are emitted into states which extend
over the barriers and exhibit quasi-three-dimensional (Q3D) behaviour.

Describing this Q2D–Q3D RST is difficult because of the complicated energy dispersion
relation of the Q3D states. In a periodic multiple-quantum-well system the extended states
above the barriers belong to numerous minibands separated by narrow gaps, leading to a
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complicated multi-subband problem. The main physical aspects of the problem, however,
can be more easily clarified if the complexity is reduced by assuming that all Q3D states
belong to a single band (termed a Q3D subband for convenience). This approximation
cannot take strong band bending in highly doped heterostructures into account; in such a
case there would exist states almost localized in the potential wells of the doped barrier
regions. In that case, one could treat the states in the barriers as Q2D states, too, albeit at
the expense of approximating minibands by sharp energy levels.

To our knowledge, an adequate treatment of the Q2D–Q3D RST within transport theories
has not yet been published even for the simplified system with a single Q3D subband.
None of the previous microscopic transport calculations that included Q2D–Q3D RST
provided a systematic comparison between the different transfer scattering mechanisms.
Some approaches did not treat the RST microscopically—for example, they assumed that
any electron with an energy above the bottom of the Q3D subband would always stay
in this subband [3], or calculated the population of a Q3D subsystem that had the same
chemical potential as the Q2D subsystem despite having a different electron temperature
[4]. A number of papers included the RST microscopically but employed plane waves
for the wavefunction of the Q3D subband [5–7], which are not orthogonal to the Q2D
wavefunctions and therefore do not preserve the quantum mechanical selection rules of
intersubband transitions. This serious deficiency was addressed in reference [5], but only in
a semi-classical approximation. Finally, in reference [8] it was assumed that the dominant
transfer scattering mechanism was elastic, thusa priori ruling out processes that involve
LO phonons. Within this approximation, the authors found an analytical solution. In
contrast, the RST problem has at least been solved for a system with a single (compositional)
quantum well with strong bend bending, in which minibands are not an issue [9]. In this
case, electrons in the barriers are confined in a potential well in the doped region, and
the RST can be treated as Q2D-to-Q2D intersubband transfer. Considerable progress has
also been made in describing the dependence of the electron emission from and capture
by quantum wells [10–16] (Q2D-to-Q3D and Q3D-to-Q2D scattering respectively) on the
electron energy and the well width, but these results were not obtained in the context of
transport calculations.

In this paper we treat the Q2D–Q3D RST in a multiple-quantum-well system with
narrow quantum wells and wide barriers. A two-subband model is considered with one
parabolic Q2D subband for the states in the quantum wells and one parabolic Q3D subband
for the states extending over the barriers. In order to preserve the selection rules of the
intersubband transfer, it is essential that the model wavefunctions of the two subbands
are orthogonal to each other. In our model the orthogonality is reintroduced explicitly by
orthogonalizing plane waves to the wavefunction of the Q2D subband.

The transport characteristics of the system are determined in the framework of the Lei–
Ting balance-equation theory [17]. The balance-equation method has proven to be a versatile
approach for various phenomena of hot-carrier transport in semiconductors [18], including
quasi-two-dimensional multi-subband systems [19] and bulk multi-valley systems [20]. The
method, which describes the non-linear transport via a parametrized Fermi-type distribution
function, provides a reliable, computationally much more efficient alternative to solving the
Boltzmann equation by means of Monte Carlo simulation. It is applicable if the carrier
density is sufficiently high to rapidly thermalize the carriers within each subband through
carrier–carrier interactions. This prerequisite is not completely fulfilled in the system that
we consider. However, it has been demonstrated in the literature that the balance-equation
approach can be applied successfully even in such cases. We derive scattering rates for
the Q2D–Q3D transfer of electrons by emission and absorption of phonons, which are used
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to formulate a particle-transfer balance. This equation, the momentum and energy balance
equations for each subband, and particle conservation form a closed set of equations for the
parameters of the non-linear transport, i.e. the drift velocity, electron temperature, chemical
potential, and relative occupation of each subband.

Another feature of the Lei–Ting balance-equation approach is that dynamical screening
can be easily incorporated within the random-phase approximation (RPA). In the case of
RST, the screening needs special attention because each of the two subsystems with rather
different properties (Q2D and Q3D) may also significantly contribute to the screening of
the intrasubband scattering in the other subsystem. Such intersubband contributions to the
screening are known to be important in quasi-two-dimensional electron gases if the transport
mobility is limited by ionized impurity scattering [21]. In addition, the RST may be affected
by dynamical screening effects through their enhancement of LO-phonon emission rates [22],
since the transfer is induced by heating the Q2D electrons.

We apply our approach to a GaAs–AlxGa1−xAs multiple-quantum-well system with
narrow, undoped wells and highly doped barriers, and compare the different transfer
scattering mechanisms. The qualitative dependences of the current–voltage characteristics,
which exhibit NDR, on the energetic separation of the two subbands and on the electron
density are investigated. We also show how the results are affected if the dynamical or the
intersubband contributions to the screening are neglected.

2. The model

Consider a periodic multiple-quantum-well system with wells of widtha and a period
d � a. For sufficiently smalla, the wells will accommodate just one subband. Due to the
wide barriers, the tunnelling between the wells and the energetic width of this subband are
negligibly small. This means that the electrons in different wells decouple and can be treated
as being quasi-two-dimensional. For energies higher than the barriers, there is a sequence of
minibands and minigaps, the gaps being smaller than 1 meV for the parameters considered
below. The wavefunctions belonging to the states of these minibands extend over the wide
barriers, so these states have a quasi-three-dimensional character. The detailed miniband
structure of the Q3D states in the growth direction (thez-direction) does not significantly
influence the parallel-transport properties (in thex–y plane). In the direction of the applied
electric field, all minibands of the Q3D states have dispersion relations that are nearly the
same. If the quantum wells are undoped and the barriers are highly doped, the mobility in
the Q2D subband is high, while the mobilities in the Q3D minibands are all low and are
assumed to be of similar value. Thus, the overall current is mainly determined by the total
fraction of electrons occupying the Q3D minibands, but not by the exact distribution among
these minibands. As the minigaps are narrow compared to the width of the minibands and
the thermal energy, they also do not significantly influence the Q2D–Q3D transfer scattering.
It is therefore concluded that an exact treatment of this miniband structure is not necessary
for obtaining a qualitative picture of the relationship between the Q2D–Q3D RST and the
transport properties of the system.

Disregarding the minigaps, we combine the Q3D minibands into a single parabolic,
isotropic subband. Hence our model consists of two subbands with the energy dispersion
relations

ε1k‖ =
h̄2k2

‖
2m∗1

(1)
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ε2k = h̄
2k2

2m∗2
+ E2 (2)

where the Q2D (Q3D) subband is labelled byj = 1 (j = 2), ‖ denotes vectors in thex–y
plane, andE2 is the energetic separation between the lower edges of the two subbands. In
this paper we only consider the case where the effective-mass discontinuity between the
well and barrier materials is small, and assume the same effective massm∗ = m∗1 = m∗2 for
the two subbands.

Neglecting the exponential tails in the barriers, the wavefunction of the Q2D subband
is given by

81(r,k‖) =
√

1/Aeik‖·r‖
∑
ν

φ1(z− νd) (3)

where the sum is taken over the well indexν, and

φ1(z) =
{√

2/a cos(πz/a) for −a/26 z 6 a/2
0 otherwise.

(4)

For the Q3D subband, it is tempting to choose plane waves as model wavefunctions
[5–7]. This choice, however, does not account for effects that the quantum wells have
on the Q3D eigenstates. The wavefunctions of these states must oscillate more rapidly in
the wells than in the barriers because the difference between their energy and the bottom
of the conduction band is higher in the wells. From a semi-classical point of view, this
means that the electrons in Q3D states have a non-zero minimum quasi-momentumkz in
the growth direction when crossing the wells. As was pointed out in reference [12], this
requires a minimum wavevector change|qz| > 0 when a Q2D electron is scattered into a
Q3D state, for example by absorption or emission of a phonon (qz being thez-component
of the phonon wavevector). This was incorporated in reference [5] by setting the matrix
element to zero for|qz| <

√
2m∗1EC/h̄

2, where1EC is the conduction band discontinuity.
Implicitly, this approximation requires one to assume that the Q2D electrons have a zero
wavevector,kz = 0, in the growth direction.

From the quantum mechanical point of view, however, such an approximate criterion
is not required. We note that quantum mechanics prohibits any intersubband transitions by
phonons withqz = 0 via the orthogonality of the subband wavefunctions. This can be easily
seen from the form factors of the intersubband scattering (cf. equation (8) below). The use
of non-orthogonal wavefunctions would also wrongly allow direct intersubband transitions.
In order to preserve the selection rule|qz| > 0 for phonon-mediated intersubband scattering
processes, we construct a Q3D wavefunction that is orthogonal to the Q2D wavefunction.
We employ the simplest choice, which is that of orthogonalized plane waves:

82(r,k) =
√

1/Aeik‖·r‖φ2(z, kz) (5)

φ2(z, kz) = 0(kz)
[

eikzz −
∑
ν

eikzνdI (12)(kz)φ1(z− νd)
]
. (6)

The orthogonalization coefficientI (12) and the normalization factor0 are given in the
appendix. Note that the probability of finding a Q3D electron in the barriers, where it
still has plane-wave character, is close to one, because we assume thatd � a. The Q3D
electrons can thus be approximately described by plane waves when calculating the matrix
elements of intrasubband scattering processes.

As intrasubband scattering processes are expected to occur much more frequently than
intersubband processes, it is possible to treat the subbands as two separate subsystems, each
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of which has its own drift velocityvj , electron temperatureTj , and chemical potentialµj .
For either subband the centre-of-mass motion is separated from the relative motion and is
treated semi-classically. Balance equations for the momentum and the energy are derived
for each subband separately as in reference [7] using the Lei–Ting approach. We take into
account intrasubband scattering on LO (Fröhlich coupling) and LA (deformation potential
coupling) phonons and on ionized impurities. The determination of the vibrational properties
of the heterostructure is a non-trivial problem itself, which requires detailed calculations.
Regarding our qualitative investigation of the electronic high-field transport, however, we
believe that details of the electron–phonon interaction are not of great relevance, and
therefore describe lattice vibrations in terms of bulk phonons that are in thermal equilibrium
at the lattice temperature. We do not include the effects of non-equilibrium phonons, the
number of which may be large if the electron volume concentration is high. Then, hot
phonons can reduce the energy relaxation rate [23, 24] and the mobility [25] of the Q2D
electrons.

The RST is accounted for by deriving a particle balance for the intersubband transitions
due to absorption and emission of LO and LA phonons. Intersubband transitions due to
scattering on ionized impurities can be included in analogy to reference [26], but they are
found to be negligible here because the Q2D electron gas and the donors are spatially
separated from each other, meaning that the form factor of the matrix element assumes very
small values [27]. The part of the Hamiltonian that describes the Q3D-to-Q2D transition
effected by absorption or emission of a phonon is given by

H 12
ep =

∑
qλ

∑
kνσ

M(q, λ)J (12)(kz, qz)e
ik·(R1ν−R2)+iq·R1ν (bqλ + b†−qλ)c†1k‖+q‖νσ c2kσ . (7)

Here bqλ (b†qλ) is the annihilation (creation) operator for a phonon of wavevectorq in

branchλ, c†1k‖νσ is the creation operator of a Q2D electron with wavevectork‖ and spinσ
in quantum wellν, andc2kσ is the annihilation operator of a Q3D electron with wavevector
k and spinσ . The centre-of-mass coordinates are defined asR1ν = (v1t, 0, νd) and
R2 = (v2t, 0, 0). The matrix elementsM(q, λ) are given by the usual bulk expressions
[19], modified by the form factor

J (12)(kz, qz) =
∫

dz eiqzzφ1(z)φ2(z, kz). (8)

The explicit expression forJ (12) in our model is given in the appendix. The Hamiltonian
for the reverse transfer is the Hermitian conjugate ofH 12

ep .

3. Balance equations

The derivation of the balance equations is similar to that in reference [20] for the Gunn
effect in GaAs. The equations for the change of the centre-of-mass momentaPj , the
kinetic energiesHje of the relative electron motions, and the particle numbersNj in both
subbands result from a perturbative calculation of the expectation values of the respective
time derivatives. The statistical averages are obtained using the density matrix of two
decoupled electron systems in thermal equilibrium at electron temperaturesTj with chemical
potentialsµj and the free phonon system. Disregarding the contributions of intersubband
scattering to frictional forces and energy relaxation rates, which are small compared to
intrasubband contributions, we obtain for the steady state

〈Ṗjx〉 = NjeE + Fjei+ Fjep= 0 (9)
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〈Ḣje〉 = −vj (Fjei+ Fjep)−Wjep= 0 (10)

〈Ṅ1〉 = X12 = 0 (11)

whereE is the electric field,Fjei (Fjep) is the frictional force in subbandj due to scattering
on ionized impurities (phonons),Wjep is the energy relaxation rate in subbandj due to
scattering on phonons, andX12 is the difference between the Q2D-to-Q3D and Q3D-to-
Q2D particle transition rates.

In our approximation the frictional forces and energy relaxation rates of the Q3D subband
are given by the bulk expressions [17]. For the Q2D subband, the frictional forces and
energy relaxation rates have been derived in reference [28] (cf. equations (32), (33) and
(47) therein). The frictional force on the Q2D electrons due to impurity scattering for
instance is calculated from

F1ei = 1

d

(
e2

2ε0εs

)2∑
q‖

qx

q2
‖
Ñr(q‖) Im 5̂1(q‖, qz = 0, qxv1) (12)

whereεs is the static dielectric constant. The effective impurity densityÑr is the product
of the remote-impurity sheet concentration and a form factor (see the appendix). Im5̂1

is the imaginary part of the screened density–density correlation function of subband 1,
which is modified compared to that of reference [28] in order to account for intersubband
contributions to the screening (see the next section).

Our main theoretical result is a microscopic expression for the rate of the phonon-assisted
particle exchange between the two subbands, and is given by

X12 = 4π

dh̄

∑
qλ

∑
k

|M(q, λ)|2|J (12)(kz, qz)|2

×
{
−
[

1+ n
(
h̄�qλ

kBT

)]
f

(
ξ1k‖+q‖
kBT1

)[
1− f

(
ξ2k

kBT2

)]
× δ(E1k‖+q‖ − E2k − h̄�qλ) (13a)

− n
(
h̄�qλ

kBT

)
f

(
ξ1k‖+q‖
kBT1

)[
1− f

(
ξ2k

kBT2

)]
δ(E1k‖+q‖ − E2k + h̄�qλ) (13b)

+ n
(
h̄�qλ

kBT

)
f

(
ξ2k

kBT2

)[
1− f

(
ξ1k‖+q‖
kBT1

)]
δ(E1k‖+q‖ − E2k − h̄�qλ) (13c)

+
[

1+ n
(
h̄�qλ

kBT

)]
f

(
ξ2k

kBT2

)[
1− f

(
ξ1k‖+q‖
kBT1

)]
× δ(E1k‖+q‖ − E2k + h̄�qλ)

}
(13d)

with f (x) = [ex + 1]−1 denoting the Fermi function,n(x) = [ex − 1]−1 the Bose function,
and using the definitions

ξjk(‖) = εjk(‖) − µj and Ejk(‖) = εjk(‖) + h̄kxvj +m∗v2
j /2.

Terms (13a) and (13b) describe the scattering of electrons out of the Q2D subband into the
Q3D subband via emission and absorption of a phonon respectively, while terms (13c) and
(13d) describe the opposite processes.

The particle numbers in the two subbands are related with each other and with the
electron temperaturesTj and chemical potentialsµj via

N1 =
∑
k‖νσ

f (ξ1k‖/kBT1) and N2 = N −N1 =
∑
kσ

f (ξ2k/kBT2).
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4. Screening

In the Lei–Ting approach, screening is incorporated in the calculation of intrasubband
scattering rates by using the screened density–density correlation functions5̂j and the bare
matrix elements (cf. equation (12)). The real and imaginary parts of the bare (unscreened)
density–density correlation functions of the two subbands are given by

Re5j(q(‖), ω) = 2
∑
k(‖)

f

(
ξjk(‖)

kBTj

)[
1

h̄ω − εjk(‖)+q(‖) + εjk(‖)
− 1

h̄ω + εjk(‖)+q(‖) − εjk(‖)

]
(14)

Im5j(q(‖), ω) = 2π
∑
k(‖)

[
f

(
ξjk(‖)

kBTj

)
− f

(
ξjk(‖)+q(‖)
kBTj

)]
δ(h̄ω + εjk(‖)+q(‖) − εjk(‖) ) (15)

where the restriction to thex–y plane is appropriate for the Q2D subband (j = 1). The
screened correlation functions are calculated from the bare ones within the random-phase
approximation (RPA).

If the subbandj was the only polarizable subband in the system, the required imaginary
part of the screened correlation function would be given by

Im 5̂j (q, ω) = Im5j(q(‖), ω)
|εj (q, ω)|2 (16)

with the dielectric function

εj (q, ω) = 1− Vj (q)5j (q(‖), ω) (17)

whereVj (q) is the matrix element of the electron–electron interaction in subbandj . The
matrix elementV1 of the Q2D subsystem also has aqz-dependence because of the Coulomb
interaction between electrons in different wells. It is given in reference [28].V2 is the
standard 3D Coulomb matrix element. Using equations (16) and (17) in a multi-subband
system is known as diagonal RPA (DRPA). This approximation, however, neglects the
fact that the polarizabilities of the individual subbands are coupled. These intersubband
contributions to the screening are incorporated in an approximate manner by adding the
polarizabilities of the two subbands in the dielectric functionε, which gives the result

Im 5̂j (q, ω) = Im5j(q(‖), ω)
|ε(q, ω)|2 (18)

with

ε(q, ω) = 1−
2∑

j=1

Vj (q)5j (q(‖), ω). (19)

We call this approximation additive RPA (ARPA) in the following section. Note that the
conventional multi-subband RPA formalism, which would normally give additional52-
terms in equation (19), is obstructed by the difference in dimensionality of the two model
subbands.

The screening of intersubband scattering processes cannot be easily accounted for in
the balance-equation approach. However, screening is expected to have little influence
on the intersubband scattering, because these processes always involve a relatively large
wavevector changeq whereas screening is only significant for smallq.
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5. Numerical results and discussion

The balance equations are solved numerically for a periodic, modulation-doped GaAs–
Al xGa1−xAs multiple-quantum-well system with wells of widtha = 4.5 nm and a period
d = 50 nm. We focus on the NDR that is caused by the RST atT = 77 K. Narrow
quantum wells are required to investigate the Q2D–Q3D RST in the quantum limit where
there is just one Q2D subband. This ensures that the behaviour of the Q2D–Q3D RST
is not obscured by additional intersubband transitions between several bound subbands. If
there was a second subband bound in the wells, it would also be increasingly populated
with growing electric field. The device characteristics would then sensitively depend on
how the electrons distribute between the upper bound subband and the Q3D subband, and
on the electron mobility in the upper bound subband. We also require the quantum wells
to be so narrow that there are no resonances between the Q3D subband and quantum well
states just above the bottom of the Q3D subband, as this would make our wavefunction
model invalid and would increase the intersubband scattering.

Results are presented for five different samples, the differences among which are
summarized in table 1.

Table 1. Differences among samples A to E.

Sample E2 (meV) N (1012 cm−2) Screening model

A 165 1.25 ARPA
B 110 1.25 ARPA
C 165 0.75 ARPA
D 165 1.25 DRPA
E 165 1.25 Static

Our reference sample (sample A) has an energetic separation between the Q2D and the
Q3D subband ofE2 = 165 meV. For the above geometrical parameters, this is appropriate
for a conduction band discontinuity of 250 meV, corresponding to an aluminium mole
fraction of x ≈ 0.28, if band bending is neglected. Band bending is estimated to lower the
centre of the barriers by 45 meV in sample A at thermal equilibrium. The main influence
that band bending has (provided it is not so strong that the potential wells in the barriers
give rise to strongly confined states) on the stationary transport comes from its reduction of
E2, which is one of the model parameters that is varied below. Note, however, that band
bending may cause oscillatory current instabilities in the NDR regime [29, 30] and that it
does affect the dynamics of the RST following optical excitation into Q3D states [31]. The
instability in the NDR regime means that the static current–voltage characteristic cannot
be measured directly, but it may be derived from measurements at microwave frequencies
[32]. The electron concentrationN of sample A is chosen to be 1.25× 1012 cm−2 per
well, and the impurity sheet concentration per barrier for the remote-impurity scattering of
the Q2D electrons is set equal to this value. The effective impurity concentration for the
intrasubband scattering of Q3D electrons is assumed to have a higher value of 1018 cm−3 in
order to adjust their mobility to a value that is appropriate for AlxGa1−xAs. This is required
because we do not include alloy scattering or scattering from DX centres. Using the same
effective massm∗ = 0.067me for all electrons restricts our approach to aluminium mole
fractions where the0 valley is lowest in AlxGa1−xAs and to electric fields for which the
0–L transfer is unimportant in GaAs. We employ a GaAs-like phonon spectrum with bulk
material parameters for the coupling constants (cf. reference [7]). Dynamical screening is
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incorporated in the ARPA.

0 1 2 3
0

1

2

3

D

C
A

D

C

A

D
rif

t v
el

oc
ity

  
(1

0 7
cm

/s
)

Electric field (kV/cm)

Figure 1. The dependences of the drift velocities of the Q2D (full lines) and the Q3D (dashed
lines) subbands on the applied field. The labels refer to the different samples; the values for
sample A are emphasized by thicker lines.

The resulting drift velocities are shown in figure 1. The Q2D electrons have a low-field
mobility of approximately 50 000 cm2 V−1 s−1, which is mainly limited by remote-impurity
scattering. Above moderate fields of approximately 100 V cm−1, the scattering by emission
of optical phonons becomes more important, and this mechanism dominates at high fields.
Due to the energy-independent density of states of the Q2D subband, the emission of optical
phonons sets in more abruptly than in bulk systems [33]. This results in a reduction of the
differential mobility at the LO-phonon emission threshold, which can be seen in thev1–E
characteristic, although this reduction does not occur abruptly because of the relatively high
lattice temperature. The drift velocity of the Q3D electrons is limited by impurity scattering
for all electric fields considered. For the chosen effective impurity concentration, we find a
low-field mobility of approximately 1300 cm2 V−1 s−1. The small increase in the mobility
at fields higher than 2 kV cm−1 is correlated with the onset of the RST, which increases
the occupation of the Q3D subband (see below).

The high drift velocity of the Q2D electrons is accompanied by a large increase of their
temperature with the electric field shown in figure 2. The difference between the Q2D-
electron temperatureT1 and the lattice temperature varies roughly asE2; this variation
would be exact if the mobility and energy relaxation time were independent of the electric
field. The temperatureT2 of the Q3D electrons remains rather low due to the smaller
power input from the drift motion. The change in its slope nearE = 2 kV cm−1 is again
correlated with the onset of the RST. For both subbands, the energy relaxation is dominated
by emission of LO phonons even at low electric fields.

In thermal equilibrium, all electrons occupy the Q2D subband, and the chemical
potentials of the two subbands are equal and approximately 45 meV (measured from the
bottom of the Q2D subband). As this chemical potential is 120 meV or some 18kBT

below the bottom of the Q3D subband, the carriers have to be heated considerably before
a significant fraction may be scattered into the Q3D subband. Thus, the Q3D subband is
only populated for fields higher than 1.5 kV cm−1 (cf. figure 3). With increasing field,
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Figure 2. The dependences of the electron temperatures in the Q2D (full lines) and the Q3D
(dashed lines) subbands on the applied field for different samples.
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Figure 3. The dependences of the relative numbers of electrons occupying the Q3D subband
on the applied field for all samples and on the electron temperature in the Q2D subband (inset).

more and more carriers are transferred into the Q3D subband and inversion is reached at
3.6 kV cm−1. At this field value, the chemical potential of the Q2D subband has fallen
from its equilibrium value to−57 meV whilst the chemical potential of the Q3D subband
has risen to 156 meV (i.e. 9 meV below the bottom of this subband). The inset of figure 3
shows the dependence of the transfer into the Q3D subband on the electron temperature of
the Q2D subband. It can be seen that the RST sets in when the Q2D electrons are heated
to about 250 K and that inversion is reached atT1 ≈ 750 K, the latter corresponding to a
thermal energy of nearly 40% of the intersubband separationE2.
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Figure 4. The dependences of the Q2D-to-Q3D (a) and Q3D-to-Q2D (b) scattering rates per
electron on the applied field for sample A. Full (dashed) lines represent transfer by emission
(absorption) of an LO phonon, and chain (dotted) lines the transfer by emission (absorption) of
an LA phonon.

The various contributions to the RST scattering rate per electron are shown in figure 4,
where the Q2D-to-Q3D rates refer to the number of Q2D electrons and the Q3D-to-Q2D
rates to the number of Q3D electrons. For low fields, the dominant mechanism for the
transfer of Q2D electrons into the Q3D subband (figure 4(a)) is by absorption of an LO
phonon, reflecting the fact that this process is possible for a lower initial energy of the
transferred Q2D electron than the other processes. Because of the small number of available
LO phonons at 77 K, the transfer with LO-phonon absorption is exceeded by transfer
with absorption or emission of LA phonons and with emission of LO phonons as soon
as an appreciable number of Q2D electrons have sufficient kinetic energy to participate
in these processes. The emission of an LO phonon is the dominant mechanism of Q2D-
to-Q3D transfer for fields larger than 1 kV cm−1. This is due to the stronger coupling
of electrons to LO phonons than to LA phonons in GaAs, although the effect is reduced
because fewer Q2D electrons have the kinetic energy required for transfer by LO-phonon
emission (≈165+ 35 meV) than have that required for transfer by LA-phonon emission
(≈165+3 meV). For the backward transfer (figure 4(b)) the scattering rates per electron are
nearly independent of the electric field. This reflects the fact that an electron in the Q3D
subband always has sufficient energy to transfer into the Q2D subband, and that there are
always a large number of unoccupied final states in the Q2D subband. Again, the Q3D-
to-Q2D scattering by LO-phonon emission dominates over that by LA-phonon emission,
and the transfer by phonon absorption is less likely owing to the low number of available
phonons.

The average drift velocity is given by

vd = N1v1+N2v2

N
(20)

and is shown in figure 5. For fields up to approximately 2 kV cm−1 it is nearly equal to
the drift velocityv1 of the Q2D subband. When the field is further increased, the number
of carriers in the Q2D subband steadily reduces, and the Q2D partN1v1/N of vd falls off
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Figure 5. The dependences of the average drift velocityvd on the applied field for all samples.
The dotted line shows the contribution of the Q3D subband tovd for sample A.

above 2.4 kV cm−1. The Q3D partN2v2/N rises with increasing field, but this cannot
compensate for the decrease of the Q2D contribution due to the lower drift velocity in
the Q3D subband. This leads to NDR for fields higher than 2.6 kV cm−1. However, a
sufficiently large difference between the mobilities in the two subbands is necessary for a
NDR to occur. For sample A the mobilities differ by a factor of 5 at 3.5 kV cm−1. It can
be estimated from figure 5 that the NDR would be quenched if the mobility in the Q3D
subband was doubled because the increase in the Q3D contribution would then compensate
for the reduction of the Q2D contribution.

5.1. Variation of parameters

To study the influence of the energetic separation between the subbands we compare the
results for sample A with those for a sample withE2 = 110 meV that is otherwise unchanged
(sample B). In the experiment,E2 could be varied by using different aluminium mole
fractions in the barriers or different well widths. We find that the drift velocities and electron
temperatures of the two subbands do not significantly differ from those of sample A. The
smaller subband separation means that the threshold kinetic energy of the Q2D electrons
for experiencing RST is reduced. The Q2D electrons can therefore be transferred into the
Q3D subband for lower electron temperatures and thus lower electric fields (cf. figure 3).
A lower electron temperatureT1 at the field for which the RST sets in is connected with a
smaller temperature increase dT1/dE at this field asT1 roughly rises quadratically with the
field. This causes the fraction of Q3D carriers to rise more slowly with increasing field.
The effect on the average drift velocity is a reduction of the maximum velocity (figure 5)
and a flattening of the characteristics on both sides of the maximum. A qualitatively similar
reduction of the maximum velocity with decreasing energy separation was also found with
the approximate analytical solution of [8] and in Monte Carlo simulations of the RST for
wide quantum wells [2]. We conclude that a high subband separation is favourable both for
a high saturation velocity and a steep decrease of the current in the NDR regime.

The other important parameter for the device characteristics is the electron sheet
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concentration. For sample C we use a lower value ofN = 7.5× 1011 cm−2 (the other
parameters are as for sample A). In this case the drift velocities of both subbands are lower
than in sample A at high electric fields (figure 1). For the Q2D subband this is due to
the reduced screening of the interaction between the Q2D electrons and LO phonons. The
smaller screening efficiency at lower electron density leads to an increase of the energy
relaxation rate and thus to a lower electron temperature (figure 2). For the Q3D subband
the change in the drift velocity results from the higher field that is required for the RST
(cf. figure 3) as its mobility is influenced by its occupation (as in sample A). The RST sets
in at a higher field mainly because the Q2D-electron temperature rises more slowly with
increasing field. It can be seen from the inset of figure 3 that the dependence of the RST on
the Q2D-electron temperature is remarkably close to that of sample A. This means that the
separation between the bottom of the Q3D subband and the chemical potential at thermal
equilibrium, which is larger at lower electron density, has less influence on the RST than
the change in the screening efficiency. The smaller gradient of theT1–E curve for sample C
also explains why the increase in the occupation of the Q3D subband with rising field after
the onset of the RST is not steeper than for sample A. Thus, the maximum of the average
drift velocity is shifted to a higher field, and its value is slightly higher as compared to that
for sample A (figure 5). So, a lower electron concentration also favours a high saturation
drift velocity.

If the well width is increased to 5.0 nm (with the other parameters as for sample A), the
transport properties do not differ appreciably from the results for sample A. An increase of
the periodd to 60 nm also does not cause any significant deviation if the electron volume
number density is reduced such that the sheet concentration remains unaltered. Although
the average drift velocity then is nearly the same as in sample A, the total current is of
course lowered accordingly. In experiment, an alteration ofa or d would of course affect
the results because it induces a change ofE2.

5.2. Comparison of screening models

In order to show the influence of intersubband contributions to the screening, we solve the
balance equations for the same parameters as for sample A, but using the DRPA instead of
the ARPA (sample D). It can be seen from figure 1 that this drastically changes the drift
velocity in the Q3D subband. The low occupation of this subband at low fields means that
its contribution to the screening is extremely small, and hence that the low-field mobility
in the Q3D subband is close to zero in the DRPA (approximately 25 times smaller than
in the ARPA). For fields higher than the RST threshold, the Q3D intrasubband screening
contribution rises with increasing occupation, and the Q3D drift velocity varies superlinearly
with the field. Similarly, the drift velocity in the Q2D subband in the DRPA is reduced
compared to that in the ARPA case when the occupation of this subband decreases due to
the RST. However, the difference is less pronounced than in the Q3D subband because the
mobility in the Q2D subband is limited by LO-phonon emission at the relevant fields. This
process is less sensitive to screening than the impurity scattering, which limits the mobility
in the Q3D subband. The electron temperatures are affected in the same way as the drift
velocities. The slightly smaller temperature of the Q2D electrons at high fields (cf. figure 2)
results in a smaller occupation of the Q3D subband (figure 3). This and the superlinear
dependence ofv2 on the field lead to a flattervd–E characteristics (figure 5).

Finally, we compare dynamical screening with static screening. Static screening is
obtained in the ARPA by settingω = 0 in the denominator of equation (18). We find that
in both subbands the drift velocities are not significantly altered if static screening is used
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instead of the dynamical ARPA (sample E, with the same parameters as for sample A).
This result, which is well known, is sometimes used to justify the use of static screening
rather than dynamic screening. However, in a system in which different subbands have
dramatically different mobilities, the total current also depends on the electron temperatures
via the redistribution of carriers among the subbands. The energy relaxation rates are higher
if dynamical screening is used, resulting in lower electron temperatures. This is a sign of
enhanced LO-phonon emission due to their coupling to plasmons [22], which is neglected
in static screening. Because of the higher temperature of the Q2D electrons for static
screening (figure 2), the RST sets in at a lower electric field (figure 3), and the average drift
velocity becomes maximal at a lower field, too (figure 5; values for fields higher than 3.2
kV cm−1 were not obtained because of numerical problems). We therefore conclude that
using dynamical instead of static screening causes a perceptible change in the calculated
current–voltage characteristics of a RST device. Note, however, that hot-phonon effects
would give a modification in the opposite direction, and this correction is expected to be
stronger for dynamical screening than for static screening.

6. Summary

The microscopic balance-equation approach to hot-electron transport developed by Lei
and Ting has been applied to the thermionically induced real-space transfer of electrons
between a subband that is bound to narrow quantum wells and states that extend above the
barriers. We have treated the case where the bound subband exhibits quasi-two-dimensional
behaviour while the extended states can be described as a quasi-three-dimensional subband.
It is pointed out that the wavefunction of the quasi-three-dimensional subband must be
orthogonal to that of the bound subband for an adequate description of the transfer. The
energy and momentum relaxation of the two subbands are calculated with separate balance
equations that include scattering on ionized impurities, and LA and LO phonons. Dynamical
screening is accounted for in an approximate two-subband RPA treatment. An additional
balance equation microscopically describes the particle exchange between the two subbands,
for which we have derived the transfer rates due to phonon emission and absorption.

We have numerically solved the equations for a GaAs–AlxGa1−xAs multiple-quantum-
well system with undoped wells and highly doped barriers. In this structure, the heating
of the electrons in the quasi-two-dimensional subband by an applied DC electric field
results in the emission of electrons from the high-mobility quantum wells into the low-
mobility barriers. This leads to a saturation of the average drift velocity at a field of
about 2.6 kV cm−1 and negative differential resistance at higher fields. The maximum
drift velocity increases with increasing energetic separation of the two subbands and with
decreasing electron density. It is also shown that the results depend on which screening
model is used, which indicates that intersubband contributions and dynamical effects should
not be neglected.

As far as we are aware, real-space transfer has not yet been investigated experimentally
for multiple quantum wells with such narrow wells. We believe that the negative differential
resistance caused by the transfer can in principle be observed. As the current–voltage
characteristic is unstable to oscillations in this regime, either a high-frequency resolution is
required, as demonstrated in reference [30], or the sample must be excited at microwave
frequencies [32]. These measurements were made for multiple quantum wells with wider
wells and a single heterojunction respectively. In both cases several bound subbands were
present in the quantum well(s), which complicates the interpretation of how the negative
differential resistance is caused by the real-space transfer. For the narrower quantum wells
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considered here, it will be rather difficult to produce samples with a sufficiently high mobility
of the Q2D electrons owing to limitations caused by interface roughness.

A possible extension of our approach is the inclusion of an additional subband that is
bound to the quantum wells. One could then investigate how the average drift velocity
depends on the energetic position of the bottom of this subband relative to the energetic
separation between the ground state and the lowest extended state.

Acknowledgments

The authors gratefully acknowledge discussions with M Asche, E Schöll, and N J M Horing.

Appendix

The orthogonalization coefficient in equation (6) is given by

I (12)(kz) = 2π
√

2a

π2− k2
z a

2
cos(kza/2) (A1)

and the normalization factor of the Q3D wavefunction is

0(kz) =
√

d

d − |I (12)(kz)|2 . (A2)

The form factor of the intersubband scattering on phonons (cf. equation (8)) is given by

J (12)(kz, qz) = 0(kz)[I (12)(kz + qz)− I (12)(kz)I
(1)(−iqz)] (A3)

with

I (1)(Q) = 4π2

Qa(4π2+Q2a2)
(eQa/2− e−Qa/2). (A4)

The square modulus ofJ (12) approximately vanishes asq2
z for small phonon wavevectors

qz. For large values of|qz| it is maximal forkz = −qz.
The effective impurity density for the scattering of Q2D electrons on remote impurities

(cf. equation (12)) is calculated in the same way as in reference [28]. For a homogeneous
distribution of donors in the barriers and no impurities in the quantum wells, we obtain

Ñr(q‖) = nir

[
2

q‖(d − a)I
(1)(q‖)

sinh(q‖(d − a)/2)
sinh(q‖d/2)

]2

(A5)

wherenir is the impurity sheet concentration per barrier.
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